Experimental Physical Chemistry: A Laboratory Textbook

Table Of Contents:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>To the Student</td>
<td>xv</td>
</tr>
<tr>
<td>Part 1 Fundamentals: Data Collection and Analysis</td>
<td>1</td>
</tr>
<tr>
<td>Working with Experimental Data</td>
<td>1</td>
</tr>
<tr>
<td>Collecting the Data</td>
<td>(1)</td>
</tr>
<tr>
<td>Keeping a Notebook</td>
<td>1</td>
</tr>
<tr>
<td>Computer Files</td>
<td>2</td>
</tr>
<tr>
<td>On-the-Fly Estimation</td>
<td>2</td>
</tr>
<tr>
<td>Data Treatment</td>
<td>2</td>
</tr>
<tr>
<td>Elementary Statistical Concepts</td>
<td>3</td>
</tr>
<tr>
<td>Determining Individual Standard Uncertainties</td>
<td>9</td>
</tr>
<tr>
<td>Combining Standard Uncertainties: Propagation of Error</td>
<td>18(8)</td>
</tr>
<tr>
<td>Least Squares and Parameter Estimation</td>
<td>26(11)</td>
</tr>
<tr>
<td>Physical Models: General Definitions and Examples</td>
<td>26(2)</td>
</tr>
<tr>
<td>Desiderata</td>
<td>28(1)</td>
</tr>
</tbody>
</table>
Resistance Thermometers 71(1)
Semiconductor Temperature Transducers 72(1)
Noncontact Temperature Measurement 72(1)
Pressure 73(5)
 Definition and Units 73(1)
 Pressure Measuring Devices 73(5)
Voltage Measurements 78(4)
 Computer-Assisted Data Acquisition 79(2)
 Binary Numbers 81(1)
Light Detection 82
 Photodide 82(2)
 Photomultiplier 84

Part 2 Thermodynamics of Gases
 Experiment 1 Thermodynamics of a Gas
 Phase Reaction: Reversible Dissociation of N2O4
 Experiment 2 Heat Capacity Ratio (CP/CV) of Gases
 Experiment 3 Real Gases, Part I: The Joule-Thomson Coefficient
 Experiment 4 Real Gases, Part II: The Second Virial Coefficient

Part 3 Thermochemistry
 Experiment 5 Bomb Calorimetry: Heat of Formation of Naphthalene or Sucrose
 Experiment 6 Bomb Calorimetry: Determination of the Resonance Energy of Benzene

Part 4 Thermodynamics of Solutions:
 Electrochemistry
 Experiment 7 The Entropy of Mixing
Experiment 8 Thermodynamics of an Electrochemical Cell, Part I: Free Energy Enthalpy, and Entropy of Reaction
Experiment 9 Thermodynamics of an Electrochemical Cell, Part II: Standard Cell Potential and Activity Coefficients
Part 5 Thermodynamics of Phase Equilibrium and Solution Properties
 Experiment 10 Mutual Solubilities of Liquids in a Binary Two-Phase System
 Experiment 11 The Vapor Pressure and Heat of Vaporization of Liquids
 Experiment 12 Liquid-Vapor Coexistence Curve of CO2 or SF6 Near the Critical Point
 Experiment 13 Solid-Liquid Equilibrium in a Binary System
 Experiment 14 Liquid-Vapor Equilibrium in a Binary System
 Experiment 15 Henry's Law Constant Determined by Headspace Chromatography
 Experiment 16 Surface Tension Properties of Liquids
Part 6 Transport Properties and Chemical Kinetics
 Experiment 17 Viscosity of Liquids, Part I: Low Viscosities
 Experiment 18: Viscosity of Liquids, Part II: High Viscosities
 Experiment 19: Determination of Collision Diameters from Gas Viscosities
 Experiment 20: kinetics of a Homogeneous
Reaction in Solution
Experiment 21: Kinetics of a Diffusion-Controlled Reaction
Experiment 22: Kinetics of a Reversible, First-Order, Consecutive Reaction: The Reduction of Cr(VI) by Glutathione
Experiment 23: Kinetics of an Enzyme-Catalyzed Reaction
Experiment 24: Kinetics and Thermodynamics of a Heterogeneous Gas Phase Reaction: Reversible Dissociation of Ammonium Carbamate
Experiment 25: Kinetics and Mechanism of a Heterogenous Reaction: Oxidation of Magnesium by Hydrochloric Acid
Experiment 26: Laser Kinetics, Part I: Luminescence Quenching of the Uranyl Ion by the Chloride Ion
Experiment 27: Laser Kinetics, Part II: Photochromism of Mercury(II) Dithizonate
Experiment 28: Laser Kinetics, Part III: Viscosity Effects on Luminescence Quenching Rate Constants
Part 7 Colloidal Systems: Micelles
Experiment 29: Determination of the Critical Micelle Concentration
Experiment 30: Determination of the Mean Aggregation Number of a Micellar System
Part 8 Polymers
Experiment 31: Molecular Weight and Monomer Linkage Properties of Poly(vinyl
alcohol)
Experiment 32: Thermodynamic Properties of Elastomers
Part 9 Photophysics and Molecular Spectroscopy
Experiment 33: Excited-State Properties of 2-Naphthol, Part I: Excited-State Acidity Constant
Experiment 34: Excited-State Properties of 2-Naphthol, Part II: Deprotonation and Protonation Rate Constants
Experiment 35: Enthalpy and Entropy of Excimer Formation
Experiment 36: Rotational-Vibrational Spectrum of HCl
Experiment 37: Vibrational Spectrum of Sulfur Dioxide
Experiment 38: Analysis of a Flame using Emission Spectroscopy
Experiment 39: Absorption Spectra of Conjugated Dyes
Part 10 Computational Chemistry
Experiment 40: Computational Chemistry: The Calculation of ΔrG, ΔrH, and ΔrS for the Reaction $N_2O_4 \rightarrow 2 NO_2$
Experiment 41: Computational Determination of the Molecular Constants of HCl