Table Of Contents:

Part I Overview and Fundamentals

Toward Understanding the Intelligent Properties of Biological Macromolecules---Implications for Their Design into Biosensors

Kenneth A. Marx

- Introduction to Smart Biosensors
 - Components of Biosensors
 - Biological Elements
 - Immobilization Methods
 - Signal Transduction Mechanisms and Biosensor Output
 - Intelligent Properties of Biological Macromolecules and Systems

Creating Biosensors That Detect Small and Large Molecules Using Different Signal Transduction Mechanisms

- Optical-Based Biosensors
- Chromophore-Containing Proteins in Biosensor Applications
 - The Phycobiliproteins
 - Bacteriorhodopsin

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Smart Biosensors</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Components of Biosensors</td>
<td>5 (1)</td>
</tr>
<tr>
<td>Biological Elements</td>
<td>5 (1)</td>
</tr>
<tr>
<td>Immobilization Methods</td>
<td>5 (2)</td>
</tr>
<tr>
<td>Signal Transduction Mechanisms and Biosensor Output</td>
<td>7 (1)</td>
</tr>
<tr>
<td>Intelligent Properties of Biological Macromolecules and Systems</td>
<td>7 (1)</td>
</tr>
<tr>
<td>Creating Biosensors That Detect Small and Large Molecules Using Different Signal Transduction Mechanisms</td>
<td>8 (36)</td>
</tr>
<tr>
<td>Optical-Based Biosensors</td>
<td>8 (1)</td>
</tr>
<tr>
<td>Chromophore-Containing Proteins in Biosensor Applications</td>
<td>8 (1)</td>
</tr>
<tr>
<td>The Phycobiliproteins</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Bacteriorhodopsin</td>
<td>15 (3)</td>
</tr>
</tbody>
</table>
Chemiluminescent Probe-Based Enzyme Biosensors 18 (1)
Organophosphorus Pesticide Detection 19 (2)
Detecting Zn2+, Be2+, and Bi3+ Ions Competitively 21 (1)
Electrochemical-Based Biosensors 21 (2)
DNA Interaction With Electropolymerized Conducting Polymers---Immobilization by Electrostatic Interactions 23 (2)
Enzyme Electrode Biosensor---Enzyme Entrapment During Electropolymerization of Thin Phenolic Films for Hydrogen Peroxide Biosensing 25 (4)
Electropolymerization of Comonomer Mixtures of Biomimetic Tyrosine and Tyrosine-Containing Peptides Forms Thin Films Possessing Specific Cell Attachment/Localization Properties 29 (1)
Piezoelectric-Based Biosensors 29 (2)
Quartz Crystal Microbalance Biosensor Detects Enzymatic Polymerization 31 (3)
Quartz Crystal Microbalance Cell Biosensor for Cell Characterization and Drug Discovery Applications 34 (1)
Measuring the Fundamental Process of Cell Attachment During Biosensor Formation 34 (4)
Cell Quartz Crystal Microbalance Biosensor Detection of Cytoskeleton Binding Drugs 38 (4)
Cell Quartz Crystal Microbalance Biosensor---Removing Cells Yields Intact Extracellular Matrix: A Natural Intelligent Biomaterial With Potential for Creating a Smart Bandage 42 (1)
Isolating and Studying the Extracellular Matrix---A Natural Intelligent Biomaterial 42 (1)
Releasing Wound-Healing Factors by Potential 43 (1)
Introduction 84 (1)
The Principle of Single Molecule Detection Using Optical Methods 85 (9)
Origins of Fluorescence 85 (1)
Measurement of Fluorescence 86 (1)
Parameters Affecting Fluorescence 86 (1)
Molecular Structure: (Example---Degree of Conjugation) 86 (1)
Substituent Effects: (Example---Electron-Donating and Electron-Withdrawing Groups) 87 (1)
Heterocyclic Compounds 87 (1)
Temperature 87 (1)
Charge Transfer and Internal Rotation 87 (1)
Solvent Viscosity/Twist Angle: (Example---the Cyanine Dyes) 88 (1)
Quenching 88 (1)
Dynamic Quenching: (Example---Stern--Volmer Relation) 88 (1)
Static Quenching 89 (1)
Perrin/Sphere of Effective Quenching 89 (1)
Formation of a Ground-State Nonfluorescent Complex (Preassociation) 90 (1)
Fluorescence Resonance Energy Transfer 91 (2)
Signal-to-Noise and the Practical Issues of Single Molecule Detection 93 (1)
Methods of Detection 94 (5)
Fluorescence Correlation Spectroscopy 94 (2)
Near-Field Scanning Optical Microscopy 96 (1)
Far-Field Confocal Microscopy 97 (1)
Wide-Field Epi-Illumination Microscopy 98 (1)
Total internal Reflection Microscopy 99 (1)
Applications of Single Molecule Detection

DNA Sequencing and DNA Fragment Sizing

Single-Pair Fluorescence Resonance Energy Transfer

Single-Molecule Electrophoresis

Single Molecule Detection in the Study of Dynamics

Single Molecule Detection in Biomolecular Dynamics

Conclusions

References

Nanoscale Optical Biosensors and Biochips for Cellular Diagnostics

Brian M. Cullum

Introduction to Nanosensors and Biochips

Beginnings of Optical Nanosensor

Fiber-Optic Tapering

Submicron and Nanoscale Sensors and Biosensors

Fiber-Optic Nanosensors

Fiber-Optic Chemical Nanosensors

Fiber-Optic Nano-Biosensors

Antibody-Based Fiber-Optic Nano-Biosensors

Protein-Based Fiber-Optic Nano-Biosensors

Molecular Beacon-Based Fiber-Optic Nano-Biosensors

Fiber-Optic Nano-Imaging Probes

Implantable Nanosensors

Quantum-Dot-Based Nano-Biosensors

Polymer-Encapsulated Nanosensors

Phospholipid-Based Nanosensors

SERS-Based Nanosensors

Biochip and Chip-Based Biosensor Arrays

Oligonucleotide-Based Biochips

Antibody-Based Biochips

Aptamer-Based Biochips
Part II Material Design and Selection I

Material Design and Selection for Smart Biosensors

Amarjeet S. Bassi

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>205(10)</td>
</tr>
<tr>
<td>Cantilever Arrays</td>
<td>207(2)</td>
</tr>
<tr>
<td>Nanotubes</td>
<td>209(1)</td>
</tr>
<tr>
<td>Ferromagnetic Particles</td>
<td>210(1)</td>
</tr>
<tr>
<td>Smart Polymer Composites, Fabrics, and Textiles</td>
<td>211(1)</td>
</tr>
<tr>
<td>Conducting Films and Gels</td>
<td>211(1)</td>
</tr>
<tr>
<td>Dendrimers</td>
<td>212(2)</td>
</tr>
<tr>
<td>Nanoparticles and Microspheres</td>
<td>214(1)</td>
</tr>
<tr>
<td>Stimuli-Responsive Materials</td>
<td>215(3)</td>
</tr>
<tr>
<td>pH-Sensitive Materials</td>
<td>215(2)</td>
</tr>
<tr>
<td>Thermosensitive Materials</td>
<td>217(1)</td>
</tr>
<tr>
<td>Photo-Responsive Materials</td>
<td>218(1)</td>
</tr>
<tr>
<td>Conclusions and Future Prospects</td>
<td>218(5)</td>
</tr>
<tr>
<td>References</td>
<td>219(4)</td>
</tr>
</tbody>
</table>

Molecular Film Assembled Detection System for Biosensors by Layer-by-Layer Adsorption

Shin-ichiro Suye

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>223(1)</td>
</tr>
<tr>
<td>Preparation of Layer-by-Layer Film on a Solid-State Device</td>
<td>224(1)</td>
</tr>
<tr>
<td>Properties of Layer-by-Layer Film</td>
<td>225(2)</td>
</tr>
<tr>
<td>Characterization of Multicomponent Films by Quartz Crystal Microbalance Atomic Force Microscopy</td>
<td>225(2)</td>
</tr>
<tr>
<td>Application of Layer-by-Layer Adsorption for Biosensors</td>
<td>227(1)</td>
</tr>
<tr>
<td>Conclusions</td>
<td>228(3)</td>
</tr>
<tr>
<td>References</td>
<td>229(2)</td>
</tr>
</tbody>
</table>

Nanostructured Organic Matrices and Intelligent Sensors

Note: The page numbers in parentheses indicate the number of pages and sections included in each part or section. The numbers in square brackets represent the page numbers of the individual documents within the page range.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technological Merit of Skin-Interface Systems</td>
<td>258</td>
</tr>
<tr>
<td>Benefits from Microelectrodes</td>
<td>259</td>
</tr>
<tr>
<td>Benefits from Microneedles</td>
<td>260</td>
</tr>
<tr>
<td>Designing the Interface Microtools</td>
<td>262</td>
</tr>
<tr>
<td>Functional Requirements or Constraints</td>
<td>262</td>
</tr>
<tr>
<td>Electrical Parameters</td>
<td>262</td>
</tr>
<tr>
<td>Mechanical Parameters</td>
<td>263</td>
</tr>
<tr>
<td>Other Parameters</td>
<td>263</td>
</tr>
<tr>
<td>Design Variables</td>
<td>263</td>
</tr>
<tr>
<td>Material Selection</td>
<td>263</td>
</tr>
<tr>
<td>Geometrical Considerations</td>
<td>264</td>
</tr>
<tr>
<td>Array Layout</td>
<td>264</td>
</tr>
<tr>
<td>Evaluation of Microstructure Interaction with Skin</td>
<td>265</td>
</tr>
<tr>
<td>Microneedle Testing</td>
<td>265</td>
</tr>
<tr>
<td>Microelectrode Testing</td>
<td>266</td>
</tr>
<tr>
<td>Conclusion</td>
<td>266</td>
</tr>
<tr>
<td>References</td>
<td>267</td>
</tr>
</tbody>
</table>

Part III Material Design and Selection II

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous Silicon in Biosensing Applications</td>
<td>271</td>
</tr>
<tr>
<td>Benjamin L. Miller</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>271</td>
</tr>
<tr>
<td>Origins and Definitions</td>
<td>272</td>
</tr>
<tr>
<td>PSi Biosensors: Early Work at Rochester</td>
<td>274</td>
</tr>
<tr>
<td>From Empirical Observations to Predictable Behavior</td>
<td>276</td>
</tr>
<tr>
<td>Understanding the Properties of Mesoporous Silicon Biosensors in Greater Detail</td>
<td></td>
</tr>
<tr>
<td>Using Enzyme Assays as a Secondary Monitor of Sensor Performance</td>
<td>278</td>
</tr>
<tr>
<td>Studying the Longevity of PSi under Environmentally and Physiologically Relevant Conditions</td>
<td>283</td>
</tr>
<tr>
<td>PSi Biosensors in Hydrogels: Toward the ``Smart Bandage''</td>
<td>283</td>
</tr>
<tr>
<td>Beyond Mesoporous Silicon: Larger-Volume Structures</td>
<td>284</td>
</tr>
</tbody>
</table>
Alternative Sensing Modes and Device Structures 285(2)
`Smart Dust' 285(1)
Electrical Sensors as an Alternative Biosensing Mechanism 286(1)
Conclusions and Prospective 287(4)
References 288(3)
Fundamental Aspects and Applications of Nanotubes and Nanowires for Biosensors 291(44)
Xueliang Sun
Chen-zhong Li
Introduction 292(1)
Carbon Nanotubes 293(8)
Introduction 293(1)
Synthesis of Carbon Nanotubes 294(2)
Growth Mechanisms and Structure Control 296(1)
Single-Walled Carbon Nanotubes 297(2)
Multi-Walled Carbon Nanotubes 299(2)
Nanowires 301(4)
Introduction 301(1)
Synthesis of Nanowires 302(1)
Vapor Phase Growth of Nanowires 302(1)
Vapor--Liquid--Solid Growth 302(1)
Vapor--Solid Growth 303(1)
Solution-Based Growth of Nanowires 304(1)
Template-Based Synthesis 304(1)
Properties of Nanowires 305(1)
Functionalization of Carbon Nanotubes and Nanowires for Biosensor Development 305(5)
Solubilization and Functionalization of Carbon Nanotubes 305(1)
Solubilization of Carbon Nanotubes 306(1)
Functionalization of Carbon Nanotubes With Biomaterials 307(1)
Noncovalent Modification 307(1)
Covalent Binding 307(1)
Biofunctionalization of Nanowires

- Design and Construction of Carbon Nanotube and Nanowire-Based Biosensors
 - Approaches to Design and Assemble Biosensors
 - Based on Carbon Nanotubes
 - Carbon Nanotubes-Based Electrochemical Biosensing Platforms
 - Directly Use Carbon Nanotubes as Electrodes
 - Carbon Nanotubes Used as Catalytic Mediators
 - The Enhanced Catalytic Performance of Nanoparticles and Carbon Nanotube Complexes
 - Carbon Nanotube-Based Nanoelectrode Arrays
 - Carbon Nanotubes as Field-Effect Transistors in Nanosensor Construction
 - Carbon Nanotube-Based Scanning Probe Microscopy Probe Tips for Imaging Biological Compounds and Biological Sensitive Measurements
 - The Use of Nanowires in Biological Detection

Conclusion and Future Perspective

References

Electrochemical Biosensors Based on Carbon Nanotubes

- Won-Yong Lee

Introduction

- Electrochemical Behavior of CNT-Modified Electrodes
- Enzymatic Biosensors Based on CNTs
 - Biosensors Based on the Enhanced Electrocatalytic Activity of CNT
 - Fabrication of CNT-Based Enzymatic Biosensors
- Oxidase-Based Biosensors
- Dehydrogenase-Based Biosensors
- Other Enzyme-Based Biosensors
Part IV Bioelectronics

Bacteriorhodopsin: From Biophotonic Material to Chemical Sensor

Jeffrey A. Stuart
Robert R. Birge
Pallab Bhattacharia
Brian J. Yordy
Jeffrey Girard
William Tetley
Duane L. Marcy
Jeremy F. Koscielecki
Jason R. Hillebrecht

Introduction 355(3)
Bacteriorhodopsin as a Biophotonic Material 358(8)
Basic Properties 358(1)
The Bacteriorhodopsin Photocycle 358(2)
Bacteriorhodopsin Photochromism 360(1)
The Bacteriorhodopsin Photoelectric Effect	361(1)
Bacteriorhodopsin Modification Through Genetic Engineering	362(4)
Bacteriorhodopsin as a Sensor Element	366(12)
Bacteriorhodopsin as an Integrated Element in Microelectronics	366(2)
Microelectronic Devices Employing Bacteriorhodopsin for Enhanced Function	368(2)
Bacteriorhodopsin as a Sensor of its Chemical Environment	370(1)
Bacteriorhodopsin and Chemical Sensitivity	371(1)
Bacteriorhodopsin-Based Chemical Sensor Architecture	372(2)
Preliminary Results	374(3)
Other Photoactive Proteins	377(1)
Future Directions	378(7)
Acknowledgments	379(1)
References	379(6)
Photoelectric Biosensors: Fundamentals and Innovative Designs	385(52)
Felix T. Hong	385(2)
Introduction	387(1)
AC and DC Photoelectric Effects	388(6)
Electron as a Charge Carrier: An Artificial Light-Driven Electron Pump	394(18)
Proton as a Charge Carrier: Bacteriorhodopsin Membranes	395(2)
Mechanistic Aspects of Signal Generation	397(7)
Component Analysis	404(8)
DC Photoelectric Effect: The Null-Current Method	412(8)
Generalization to Other Photoelectric Systems	418(1)
Prototype Molecular Sensors Based on Photoelectric Effects	418(1)
Two Ways of Configuring Photoelectric Sensors	418(1)
Protein-Based Photoreceptor Array on Flexible Plastic Substrates

Wei Wei Wang
George K. Knopf
Amarjeet S. Bassi

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>462</td>
</tr>
<tr>
<td>Bioelectronics</td>
<td>462</td>
</tr>
<tr>
<td>Bacteriorhodopsin: Structure and Biological Function</td>
<td>463</td>
</tr>
<tr>
<td>Proton Transfer Mechanism in Reconstituted Bacteriorhodopsin Films</td>
<td>464</td>
</tr>
<tr>
<td>Bacteriorhodopsin Applications</td>
<td>465</td>
</tr>
<tr>
<td>Flexible Electronics Technology</td>
<td>467</td>
</tr>
<tr>
<td>Motivation of This Work</td>
<td>467</td>
</tr>
<tr>
<td>Flexible Photoreceptor Array Based on Bacteriorhodopsin Film</td>
<td>468</td>
</tr>
<tr>
<td>Flexible Photoreceptor Array Based on Bacteriorhodopsin Film</td>
<td>468</td>
</tr>
<tr>
<td>Bacteriorhodopsin Film</td>
<td>468</td>
</tr>
<tr>
<td>Purple Membrane Preparation</td>
<td>468</td>
</tr>
<tr>
<td>Flexible Polyethylene Terephthalate Film With Patterned Indium Tin Oxide Coating</td>
<td>468</td>
</tr>
<tr>
<td>Overview of Materials and Techniques</td>
<td>468</td>
</tr>
<tr>
<td>Fabrication of Indium Tin Oxide Patterned Polyethylene Terephthalate Film</td>
<td>469</td>
</tr>
<tr>
<td>Device Fabrication</td>
<td>469</td>
</tr>
<tr>
<td>Principles of Electrophoretic Sedimentation Fabrication</td>
<td>469</td>
</tr>
<tr>
<td>Fabrication Conditions</td>
<td>470</td>
</tr>
<tr>
<td>Fabrication Process</td>
<td>470</td>
</tr>
<tr>
<td>Absorption Spectrum of the Flexible Bacteriorhodopsin Film</td>
<td>470</td>
</tr>
<tr>
<td>Array Circuit Design</td>
<td>472</td>
</tr>
<tr>
<td>Equivalent Circuit Model of the Individual Pixel</td>
<td>472</td>
</tr>
<tr>
<td>Front-End Circuit Design</td>
<td>474</td>
</tr>
<tr>
<td>Three Common Front-End Circuit Designs</td>
<td>474</td>
</tr>
<tr>
<td>Analysis of the Switched Integrator</td>
<td>477</td>
</tr>
<tr>
<td>Overall Circuit Architecture</td>
<td>478</td>
</tr>
</tbody>
</table>
Overview of Array Circuit Architecture 478(1)
Circuit Architecture for Bacteriorhodopsin-Based Photoreceptor Array 479(1)
Performance Analysis 480(11)
Noise and Signal-to-Noise Analysis 480(1)
An Overview of Noise Sources 480(1)
Signal-to-Noise Analysis in Bacteriorhodopsin Photoreceptor 481(2)
Noise Measurement 483(4)
Linearity and Dynamic Range 487(1)
Spectral Response 488(1)
Response Time 488(2)
Pixel Uniformity 490(1)
Array Performance Under Mechanical Bending 491(1)
Application---Motion Detection 491(4)
Overview of Motion Detection 491(1)
Motion Detection Algorithm 492(1)
Implementation 493(2)
Experimental Setup and Results 495(1)
Conclusions 495(10)
Overview 495(2)
Limitations and Recommendations 497(1)
Acknowledgments 498(1)
References 498(7)

Part V Applications in Detection and Monitoring 505(16)
Optical Biosensors in Foodborne Pathogen Detection

Tao Geng
Arun K. Bhunia

Introduction 505(1)
Foodborne Pathogens 506(1)
Detection of Foodborne Pathogens Using Optical Biosensors 507(7)
Surface Plasmon Resonance 507(2)
Resonant Mirror 509(1)
Fiber-Optic Biosensor 510(1)
Array Biosensor 510(2)
Raman Spectroscopy 512(1)
Light-Addressable Potentiometric Sensor 513(1)
Concluding Remarks 514(7)
Acknowledgments 515(1)
References 515(6)
Multiarray Biosensors for Toxicity Monitoring and 521(18)
Bacterial Pathogens
Silvana Andreescu
Jason Karasinski
Omowunmi A. Sadik
Introduction 521(1)
Multiarray Biosensors: Concept, Design, and 522(4)
Opportunities for Toxicity Monitoring
Multiarray Biosensors for Monitoring Toxic 526(3)
Chemicals
Electrochemical Multisensor Array 526(1)
Electronic Nose Technology 527(1)
High-Throughput Multiarray Biosensors for 528(1)
Toxicity Screening
Multiarray Biosensors for Pathogen Detection 529(5)
Optical Multiarray Sensors for Pathogen 530(2)
Detection
Electrochemical Multiarray Sensors for 532(2)
Pathogen Detection
Mass-Sensitive Sensors for Pathogen Detection 534(1)
The Role of Computational Techniques in 534(1)
Processing Multiarray Biosensor Data
Conclusion and Future Trends 535(4)
References 536(3)
Approaches to Allergy Detection Using Aptasensors 539(28)
Emile Brys
Sara Tombelli
Maria Minunni
References 562(5)
Biosensors for Virus Detection 567(30)
 Ebtisam S. Wilkins
 Ravil A. Sitdikov
Introduction 568(8)
 Virion and Virus Structure 569(2)
 Viral Taxonomy (Classification) 571(1)
 How Virus Cause Disease 571(1)
 Detection Methods 572(1)
 Stains for Diagnosis of Viral Infections 573(1)
 Direct Detection in Smears 573(2)
 Detection in Tissue Sections 575(1)
 Foodborne Illness 575(1)
Biosensors for Detection of Virus and Bacteria 576(7)
 Genosensors 576(1)
 DNA Chips and DNA Biosensors 576(1)
 Differential Pulse Voltammetry and 577(1)
 Electrochemical Genosensing
 Impedance Sensor 577(1)
 Immunomagnetic Technique 578(1)
 Atomic Force Microscopy-Immunosensor Assay 578(1)
 Flow Cytometry 578(1)
 Optical Biosensors 579(1)
 Piezoelectric-Based Acoustic Wave Devices 579(1)
 Capillary Electrophoresis (CE) 580(1)
 Biosensors for Environmental Applications 580(1)
 Electrochemical Biosensors 580(2)
 Potential Markets for Biosensors 582(1)
Commercial Equipment for Monitoring Virus 583(5)
 Commercial Kits 583(1)
 Directigen™ Flu A, Directigen™ Flu A + B 583(1)
 (Becton and Dickinson, Inc.)
 The Quick Vue Influenza A + B from QUIDEL 584(1)
 Company
 The BinaxNOW® Influenza A and B test (Binax, 585(1)
Detection of Hanta, Influenza A, and Parainfluenza Virus

Ebtisam S. Wilkins
Ravil A. Sitdikov

Introduction
Hanta Virus
Avian Influenza

Sensor Design and Immunoassay System
Detection of Hanta Virus
Detection of Parainfluenza and Influenza A Viruses

Immunoassay Scheme and Amperometric Detection
Optimization of the Assay Parameters
Optimization of the Amperometric Measurement Stage
The Cyclic Voltammetry of Horse-Radish Peroxidase and Alkaline Phosphatase Enzymatic Products
Selection of a Working Potentials

Experimental Design
Reagents and Materials
For Hanta Virus
Experimental Procedure
For Influenza A Virus and Parainfluenza Virus
Results and Discussion for Hanta Virus Test 605(9)
Field Test of Hemolysis Blood Samples 606(2)
Effect of H2O2 Used in the Substrate 608(1)
Alkaline Phosphatase vs. Horse-Radish Peroxidase 608(1)
Nation Layer 609(1)
Result and Discussion of Influenza Samples 610(4)
Conclusions 614(3)
References 614(3)

Perspectives on Biosensor Technology 617(12)
Amarjeet S. Bassi
George K. Knopf

Introduction 617(1)
New Directions of Research 618(4)
Enhancing Sensitivity and Selectivity 618(1)
Biomimetic Sensor Designs 619(1)
Optical Nucleic Acid Sensors 620(1)
Nanostructured Organic Biological Matrices 620(1)
Advances in Carbon Nanotubes 621(1)
Future Impact on Medicine and Health Care 621(1)
Mimicking Biology: Is This a Realistic Goal? 622(3)
Concluding Remarks 625(4)
References 626(3)

Index 629
Publisher Summary 1
A smart biosensor, as Knopf (mechanical and materials engineering, U. of Ontario, Canada) and Bassi (chemical and biochemical engineering, U. of Ontario) define it, is "a compact analytical device that combines a biological, or biologically derived, sensing element with an electrical, optical, or chemical transducer." Stressing that it is the synergistic functional integration of component parts that makes a biosensor "smart," they present 23 chapters that together provide a multidisciplinary perspective on the field. Opening chapters discuss the intelligent properties of biological macromolecules, optical methods of single molecule detection, nanoscale optical biosensors and biochips for cellular diagnostics, conducting polymer nanowire-based biomolecular field-effect transistor, machine learning and smart biosensor functions, and neuronal network biosensors. Seven chapters then address issues of material design and selection, followed by a section on bioelectronics. The volume concludes with six chapters on applications in detection and monitoring, including optical biosensors in foodborne pathogen detection, multiarray biosensors for toxicity monitoring and bacterial pathogens, approaches to allergy detection using aptasensors, biosensors for virus detection, and detection of influenza. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com)